
A Validated Parser for Stan

Brian Ward

Boston College Computer Science Department 2021

Advisors: Joseph Tassarotti and Jean-Baptiste Tristan

1

Two Different Kinds of Programming

Probabilistic Programming
Languages

• Programs describe probability
densities and perform inference

• Compiler actually generates code in a
different high-level language

• Examples: Stan, BUGS, Edward,
Infer.Net

Proof Assistants

• Programs are conventional software
and formal proofs of properties

• Can also automate parts of these
proofs and check their correctness

• Examples: Coq, Agda, Isabelle, F*

2

A computer can prove things?

Theorem plus_assoc : forall n m p : nat,

n + (m + p) = (n + m) + p.

Proof.

intros n m p. induction n as [| n' IHn'].

- (* n = 0 *)

reflexivity.

- (* n = S n' *)

simpl.

rewrite -> IHn'.

reflexivity.

Qed.

Theorem: For any n, m and p,
n + (m + p) = (n + m) + p.

Proof: By induction on n.

• First, suppose n = 0. We must show that
0 + (m + p) = (0 + m) + p.

• This follows directly from the definition of +.

• Next, suppose n = S n', where
n' + (m + p) = (n' + m) + p.

• We must now show that
(S n') + (m + p) = ((S n') + m) + p.

• By the definition of +, this follows from
S (n' + (m + p)) = S ((n' + m) + p),

• which is immediate from the induction hypothesis.

• Qed.

https://softwarefoundations.cis.upenn.edu/current/lf-current/Induction.html 3

Why bother?

• Sometimes it’s easier to prove things than test
them – especially when randomness is involved!

https://xkcd.com/221/ 4

Parsing

• Compilation step which verifies input is well
formed and builds syntax tree
• Also responsible for syntax errors

E ::= (E + E) | a

+
/ \

a +
/ \

a a
>>> print("Hello)
File "<stdin>", line 1
print("Hello)

^
SyntaxError: EOL while scanning string literal

+
/ \

+ a
/ \

a a

?

5

How to Verify a Parser

1. Write Coq-friendly grammar specification for
Menhir

2. Translate AST and semantic actions into Coq

3. Generate a sound, complete, and safe parser

4. Connect to the rest of your compiler

6

How to Improve Your Verified Parser

1. Notice an area for improvement in your tools

2. Learn enough to modify them

7

Decision: How to handle errors

1. Do what CompCert, a large verified compiler, does,
and parse the language twice.
• This runs an unverified parser in an ‘incremental’ mode
specifically for errors

2. Allow the Coq mode of Menhir to be run
incrementally.

8

Who is in charge?

9

Table mode puts the lexer
in charge

The verified mode has the
parser as a pure function

Decision: How to handle errors

1. Do what CompCert, a large verified compiler, does,
and parse the language twice.
• This runs an unverified parser in an ‘incremental’ mode

specifically for errors

2. Allow the Coq mode of Menhir to be run incrementally.
• This requires trusting the code running the parser.

3. Return extra information if the parser fails.
• This was ultimately chosen as the simplest and most elegant

solution

10

How to Improve Your Verified Parser

1. Notice an area for improvement in your tools

2. Learn enough to modify them

3. Make the change and have it included in the tool

3b. Write a few hundred error messages by hand

11

Further Work

• More features for Menhir: associativity and
precedence

12

Thank you!

13

